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ON INSTABILITY OF EQUILIBRIUM WHEN THE FORCE FUNCTION 
IS NOT A MAXIMUM* 

E. A. LIUBUSHIN 

Some theorems on the instability of equilibrium of a mechanical system when the 
force function is not a maximum are proved by using Poincark's recurrence theorem 
and the principle of least action in Jacobi's form. The behavior of the trajector- 
ies of the system as a whole is examined. 

1. We consider a real autonomous system of equations 

x' = f (x) (1.1) 
Here x is a point in the n-dimensional phase space R" , with coordinates (+,..., zn), f 
is a vector-valued function on R”, defined by the collection (fi,..., fd of real functions 
on R^. We assume that the solutions of system (1.1) are defined for t>O for any in- 
itial data. All functions encountered below are assumed continuous and to have continuous 
first-order partial derivatives. If system (1.1) satisfies the incompressibility condition 

and Y is a domain invariant relative to the flow generated by system (l-l), then the follow- 
ing statement is valid. 

Theorem 1. If a function W(x) exists such that the inequality 

(1.2) 

is fulfilled in domain V and w(x) +O in V, then V is an unbounded set in R”. 

Proof. Let x(t, x0) be a solution of system (l.l), starting at X,E R’“, SO that 
x(0, x0) = x0. Let us assume that domain Vis bounded and, consequently, has a finite measure. 
Then all the hypotheses of Poincare's recurrence theorem /l/ are fulfilled for V. This 
signifies that for almost every point X,E V there exists a sequence of times (r,,} such that 
the equalities 

lim n+.nrTz= *, lim n-mx(Z,,XO)=XO, 2,=0 (1.3) 

are valid. We denote the set of these points by VI? Thus, the measure of VI equals the 
measure of V. Since w'(x)fO, in domain V we can find a point x0 and a neighborhood 
B of it such that the inequality W'(x,)<O is valid in B, and we can take it that 
xg E v1. 

We consider the equality 

'I? 
w (X(%,G)) - W(x,)==~ W'(x(t.xo))dt (1.4) 

0 

Here {z,,} is chosen in accord with (1.3). Using (1.3) and the continuity of W, we obtain 

lim,, (W (x (r,, x0)) - w (x0)) = U 
Then from (1.4) it follows that 

1 imn-.- w'(x(t,xo)) dt= 0 (1.5) 

Equality (1.5) leads to a contradiction. Indeed, from (1.2) it follows that the sequence in 
the right hand side of (1.4) is monotonic and, consequently, has a limit. On the other hand, 
since x0 E B, we have W(x(0, x0))= W'(x,)<O and, consequently, 

lim,_.~~W'(x(t,~))dt<O 
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From the contradiction obtained it follows that v is an unbounded set. 

Corollary. Let the equilibrium position of system (1.1) occur in the closure of V. 
Then, if in any neighborhood of the equilibrium position a point x,, exists such that X,E V 
and w' (x0)< 0, then this equilibrium position is unstable. Furthermore, for any &f>O and 
any 6 >0 a system trajectory exists starting in the &-neighborhood of the equilibrium posi- 
tion and leaving the M-neighborhood of the equilibrium position after a finite time. 

Proof. We assume the contrary. Then 6>0 exists such that the inequality J/x(~,x~)/J<M 
is valid when l/so[<6. Having considered the union of the trajectories starting in the 8- 
neighborhood of the equilibrium, we obtain a bounded domain B invariant relative to the flow 
generated by the trajectories of system (1.1). Then the hypotheses of Theorem 1 are fulfilled 
for snv. Thus, B n Y must be an unbounded set, which is impossible because B is bound- 
ed. 

From the Corollary if follows that a Liapunov function not depending explicitly on time 
and not being a first integral of the system cannot be constructed for systems satisfying the 
incompressibility condition if the equilibrium is stable. This fact was noted for certain con- 
trol systems not satisfying the incompressibility condition, although it does not obtain in 
the general case 121. 

Chetaev's instability theorem /3/ as applied to systems satisfying the incompressibility 
condition can be modified under the assumption that W'>O in the domain C(W>O), and 
W’+O in domain B n C, where B is any neighborhood of the equilibrium. Chetaev's instab- 
ility theorem with the application of two functions /4/ can be modified analogously. 

2. Let us consider a holonomic conservative mechanical system with n degrees of freedom 

(Q> ’ f -9 !&al. Let T be the system's kinetic energy and iI be the potential energy. We 
redkon that the equilibrium position, possibly unisolated, coincides with the origin 0 of s 
configuration space. We assume that the inequality 

au / aq1 > 0 (2.11 
is valid in some neighborhoodBofpoint 0 and that in any neighborhood BrC B of point Owe 
can find a point for which the strict inequality (2.1) is valid. We assume as well that XT/ 

asl>O. 

Theorem 2. The equilibrium position of the system described above is unstable. 

Proof. We consider the system's equations of motion in the Hamiltonian form. Let P(A) 
be the projection of set A from the phase (q, p)- space onto the configuration q-space. We 
assume the stability of the equilibrium position. Then a neighborhood V of point 0, bound- 
ed and invariant relative to the flow generated by the system's phase trajectories, exists 
such that P(V) CB. We consider the function W(q,p) = p1. Allowing for (2.11, we obtain 

w,=-aHiaq,=-aT,~,--au/aq~,<O 

and W’+O in domain P'. Then Theorem 1 tells us that V is an unbounded set, which contrad- 
icts the choice of V. Thus, the system's equilibrium position cannot be stable. Theorem 2 
has been proved. 

3. We now assume that the coefficients aij(cl) of forms 2' and U are functions of class 
C'. Let Cl <O everywhere on R". We denote the equilibrium position by 0. The follow- 

ing theorem is valid under these assumptions. 

Theorem 3. For any M>O and S>O -there exist IIq,,/1<6 and f/qk/(<8 such that a 
trajectory of the mechanical system with these initial data, perhaps more than one, exists for 
some t, )I q (t)II = RI. 

Following an idea of Hagedorn /5/, we obtain the family of trajectories needed from the 
priniciple of least action /S/. In order to get rid of the assumption on strictness of the 
maximum of U, essential in /5/, we change not the equilibrium position, as in /S/, but the 
variational problem itself. This leads us as well to results of a nonlocal nature. In the 
proof of Theorem 3 we shall use facts concerning an elliptic positive variational problem (see 
Sections 29, 51, 54 in Vol.1 of /6/j /7/. 

Proof. At first we assume that U, aij E Cm. We fix h> 0 and we consider a variat- 
ional problem with fixed endpoints 

(3.1) 

Here s is the arc length on curve C(0, Q). We solve the problem in the class of curves admit- 
ting of parametrization that is piecewise-smooth in s. By the principle of least action the 
solutions of problem (3.1) determine the trajectories of the corresponding mechanical system, 
along which T +.U =h. Considerballs B, B1,Bz,Bs centered at 0 with radii r< r,<r,<rs. 
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We fix a point QE 3B 4T is the boundary of set A). We define a function e(z) thus 

e (4 = 1 

o,z<+ 
exp [-- (5 - ?)-*I, 5 > ra 

As is well known, e(z)= Cm. Having replaced u in problem (3.1) by the function 

Uh = u +he(Zqt*), h<O, UJ.EC_ 

we once again obtain an elliptic positive problem 

I&(C) = min (3.2) 

Since (3.2) is a positive problem, the minimizing /5/ sequence of curves C,\v = 1, 2,...) join- 
ing in Bs the points 0 and Q automatically exist. By a we denote the lower bound for T 
when clEBa Ils'll- 1, and by y the lower bound for e(II qII”) when qE Bnl. We consider 
an admissible curve C(0, Q) in B, intersecting the boundaries a& and aB,. Let s, be 
the lower bound of the values of parameter s for which curve C intersects a& and s1 be 
the upper bound of the values of parameter s for which C intersects 8%: Q (~4 E a&, Q (s,) E 
aBI. Then the value of functional Is on the part of curve C from sr to s, can be bounded 
from below by the quantity 

x = 2 (r, - rr) (I h I ay)L'r 

We select h so as to fulfil the inequality IA (Oq)<x (Og is a segment). 
This can be done. Indeed, by the construction of ~,,l,(v)is in fact independent of X, 

while by choice of I we can make x arbitrarily large. We fix the h needed. Having re- 
placed the curves from the sequence C,(v=i,&...,) intersecting boundaries ,a& and aB, by 
the segment q, we obtain a new minimizing sequence located in Bn, I.e., strictly inside 
relative to & . By a well-known theorem of the calculus of variations (see Lemma 51.31 in 
Section 51 of Vol.1 of /6/) an extremal C(O,Q) of length sg exists for problem (3.2 ) , furn- 
ishing the minimum of functional I,+. 

The parameter time is introducedon curve C(O,Q) by the formula 

obviously the 
the boundary 
ifying curve 
system. This 
al 1~. BY 

t=~(k-U)-'/~(~~4i8.'li)v'd' 

0 

point Q is reached in a finite time to. Let 
. tr<t,, be the time in which 

aB is reached. On the interval O< t< tl the functions q1 (t),. ., qn (4 vet- 
C determine the solutions of the Lagrange equations of the original mechanical 
follows from the principle of least action and from the construction of function- 
fi we denote the smallest eigenvalue of matrix IlU,j(O)(l. By virtue of the energy 

integral the inequality 11 q'(O)11 <(Xl p)'/' is valid for the initial velocity q' (0). Thus 
it is clear that by letting h tend to zero we obtain a family of trajectories establishing 
the instability of the equilibrium. We set M = r. 

In order to carry the result over to the case when UE CL, aij= Cl we make use of a stand- 
ard procedure based on a theorem of Arzelg /a/. As a matter of fact, we approximate the funct- 
ions l_J and ali by functions 17kraijk E Cm (k = 1,2,...) on compactum B, in such a way that the 
convergence to U and aij as in the P-topology. We can take it that Ck<O on B, and 
that the forms Tk are positive definite/S/. Repeating the preceding arguments for eacn k,we 
obtain a family of curves Ck (k = 1, 2,. . .). It can be shown that this family of curves satisfies 
the hypotheses of Arzeld's theorem. Thus, we can select a subsequence (Ck') from the sequence 

{ck), converging to a trajectory of the original mechanical system. The choice of this sub- 
sequence may not be unique and, consequently, there can be several trajectories with the given 
initial conditions. This is understandable since the condition U E C’,aij E C’ does not 
guarantee the uniqueness of the solutions of the differential equations of motion. The theorem 
has been proved. 

Note 3.1. In the case of a local minimum B, must be chosensuchthat U (q)<O when 
qEBg. 

We consider a plane n in R”, passing through 0. By n1 and x8. we denote the half- 
spaces into which R” is divided by plane R. Let P: Rn-+ R” be a symmetry mapping relative 
to plane + and DP: T(R”)+ T(R”) be a mapping tangent to P. We define functions U* and 
aij* (i, f =4,. . ., sj as follows 

- 
(iii (9)v 9 E nl 

lJ*= 
1 

U(q), qE%l 

U(P(q)), 9E% 
( aij *= 

%j (P ((I))* 9 E n2 

We assume that U*,aij* E CB. Regarding the form 
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G”* can be looked upon as 
that T*oDP = T* , where 

T* = B aij*qi’qj 
fij 

a function on the space T(R") = R" X R" tangent toR");we 
T*oDP is a composition of mappings. For example, let 

T = i aiqi”, ai = const 
is* 

16% 

Then for any location of plane n the condition T* o DP = T* holds automatically for 
following theorem is true under these assumptions. 

Theorem 4. If U <O when qEA,, then the system's equilibrium is unstable 
any M>O and S>O there exists a trajectory of the system with initial data (Iq 

II q' (0) II < 6 , such that Ilq(t)ll = M for some t. 
I 

and for 

(0) II -c 6 

Proof. In problem (3.1) we replace U by U* and we consider the corresponding varia- 
tional problem I* (C) = min , taking it that QE 8B n n. By hypothesis, U* <O on R” and 
lJ* E ca. All the arguments relevant to problem (3.1) are valid also for the problem being 
analyzed. Indeed, to obtain the extremal C(O, Q) in problem (3.1) the condition u E Cm, 
aij E Cm is unnecessary since U EC2 suffices for the application of the lemma on the mini- 
mizing sequence of curves /5/. Thus, by a verbatim repetition of the arguments relevant to 
(3.1), we find the minimizing extremal C+(O, Q) C B* of length S of the altered variational 
problem Is* (C) = min; h is chosen as in problem (3.2). 

By s0 we denote the value of parameter s for which curve C first intersects aB. We 
define a set NC [O,Sl as follows. We take SE N if the point C-Q(s)= z and if in any 
neighborhood of s there exists s' such that Q(s')@n. At first we assume that N# 0 and 
show that N consists of a finite number of elements. ‘Indeed, otherwise a point sl, the 
limit point for N would exist. By construction the set N is closed, so that s'EN. We 
choose p>O in accordance with the local existence theorem in the calculus of variations 
(see Theorem 29.5 in Chapter 2 of Vol.1 of /6/).Then s'~,Yexists such that Is'-s' /<p/Z. Let 
s’<$. Then,if the arc C* (Q(s') Q_($)) does not lie in plane n, another extremal C** = P(C* 

(Q (s’), Q (s’))) exists joining Q (s') and Q (s') E z. 
Indeed, from the theorem's hypotheses it follows that IL* (C' (Q (s'). Q (.G))) = II* .(C**) =min. 

Both these extremals (recall that s is the length) lie in a ball of radius p, which is im- 
possible by virtue of the choice of I?, so that necessarily CD (Q (s'), Q @)) c n and (s', sL)fl N = 

D. But since s'is a limit point for N, there exists s">s' such that s"ENands"--<p/i. 
As above we can prove that C* (Q (s*), Q (8")) c n and (G, s") n N = 0 Thus, s'@N, which contradicts 
the choice of s'. Consequently! N = {sl<sz < . . . < sk}. The arc C* (Q (sj), Q(sj+l)) is locat- 
ed either in n1 or in ZC, (Q(S) @IT for SE (sj,sj+J) or in z. Having mapped the part of curve 

C* (0, Q) , lying in n,, into z, symmetrically relative to plane 3t, we obtain a piece- 
wise smooth curve C**(O, Q)c Z, since smoothness can be violated only at the points of set 

But from the definitions of U*and 
in&&atley that 

* and from the fact that T* =T*oDP it follows 
IA* (C* (0, Q)) = IA* (C** (0, z)j) = min, so that C**(O,Q) is necessarily a smooth 

curve, being, as is C* (O,Q), th e minimizing extremal for the altered problem I&* = min relat- 
ive to domain B,, while its part up to the first intersection with aB. namely, C++ (0, Q 

(So)) defines an extremal, possibly not minimizing, for the problem I*(C) = min. Indeed, the 
problem's Euler equations coincide with the Euler equations of the problem I&* = min on set 

B. But the Euler equations for the variational problem corresponding to the original mech- -- 
anical system coincides on z1 n B with the Euler equations for the problem Ii* = min by the 
construction of U*+ and aij*, and since C** (0. Q (h)) C B n a-cl, C** (O,Q(?,)) determines a 
trajectory of the original mechanical system. 

However, if N= 0, then the original system's trajectory is found directly by the 
principle of least action from the curve C* (0, Q (%J) if C* (0, Q) c % or from the curve 

P (C*) if C* (0, Q Bo)) c 5%. Letting h tend to zero and repeating for each h the arguments 
presented, we obtain the desired family of trajectories. The theorem is proved. 

Within the hypotheses of Theorem 4 we can find, for example, a system in which the et5 
are independent of bl, U = qi9 + F (qz,. . .T q,),F < 0, and the plane q1 = 0 is chosen as n 
(functions a*j can be taken symmetric relative to plane Ql = 0). Let us return to thecase 
when U has a strict maximum at the equilibrium,UE C*,,d ai, EC"(i, i = 1, . . . . n). The in- 
stability of the equilibrium was established in /5/ by using the family of trajectories along 
which the energy integral's constant his positive. Let us prove the following theorem. 

Theorem 5. For any M>O and S>O there exists, if the maximum is global, a traj- 
ectory of the system with initial data II 9 (0) II c 63 II q’ (0) II c 6 I such that along it h<O 
and 11 q(t)11 = M for some t. 

Proof. We consider variational problem (3.1) for h<O. This problem is elliptic and 
positive in domain Mh = (Q lU(Q) <h}. By U,, we denote the lower bound of U on compactum 

assume 

T*.The 
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B, / B,, .where B, is a ball of radius p centered at 0. We fix some S'> 0 such that fiat 
B and we consider the altered variational problem IA = min, taking the endpoints Q1 ,E as, 

and Q%E~B as being fixed. We set brx =.: I; + h [e (I) + e, (z)] , where h <O and function e, 
is defined by the formula 

1 (I, r>6” 
e1(2) = exp [- (1 -- ayy, x <a*, 

x= 5, qiz 
i=i 

We choose h from the inequality up <IL < 0, where p =6/ 2. It is clear that B,/B, c M,,. 
Arguing as for problem (3.1) (instead of B, and B we examine M,, n B3 and BIBA , respect- 
ively), we conclude the existence of an extremal C,(Q1, Qz) for (3.2) relative to domain Mh fl 
B, for h sufficiently large in modulus. Let s, be the lower bound of the values of para- 
meter s, for which Ca(Q1,Qz) intersects iXZ , and let s, be the upper bound of the values 
of parameter s<s, , for which C,(Q1, Q2) intersects t3Bb. Since by its construction lJh = tJ 
on the set B/Bg, the Euler equations for problem (3.1) coincide on B/B* with the Euler 
equations for problem (3.2) and, consequently, the arc Cg(Q(sl), Q(sz)) determines an extremal, 
possibly not minimizing, for problem (3.1). Further, by the principle of least action we find 
a trajectory ,of the original mechanical system (Q(s~) is the initial point). Letting 6 tend 
to zero, we obtain the desired family of trajectories. Indeed, h-+0 as 8+ 0 and Q (O)-+O 
since q (0) = Q (sl) E 8Ba , so that n'(O)-+ 0 by virtue of the energy integral. We select R 
as M. The theorem is proved. 

A note analogous to Note 3.1 can be made regarding Theorems 4 and 5 when the maximum is 
local. 

The results obtained can be applied with appropriate changes to the inversion of Routh's 
theorem /5/. 

The author thanks V. V. Rumiantsev under whose guidance this work was done and A. V. 
Karapetian for useful discussions. 
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